Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim

Prdcesses, Threads, Memory and Resources in Distributed

Systems

Mohammed A. M. Ibrahim

Faculty of Engineering &Information Technology,
Taiz University,
Republic of Yemen.
E-mail: sabril966@yahoo.com.

Abstract

Multiple processors and shared memory are important paradigm for
building a distributed system. For building applications, threads proves
to provide better performance than processes. This paper presents some
of basic requirements for building a distributed system. It looks at
conflict arises due to requests to shared resources in distributed systems.
The solution of these conflicts in a timely manner is important. Several
models to resolve conflicts exist. Some appealing ones are discussed in
this paper. With several copies of data at different sites, a reference on
memory is required to leave the data consistent throughout the memory
blocks. Changing one copy and leaving the other is unacceptable. The
memory consistency model of shared memory multi-processor solve the
problem, and influence both the performance and the programmability of
the system.

1. Introduction.

Keywords: processes, threads, distributing operating system, network
operating system, resource allocation

374




Processes, Threads, Memory and Reso.ul;c'es in e, Mohammed A. M. Ibrahim

This paper discusses various issues on buil'ding a distributed system.
The discussion is based on the knowledge gained during the study of
Distributes Operating System course, one of the prerequisite of my Ph.D.
program. During the study various technics of building a distributive
system, as opposed to traditional centralized syst'erri, were covered.

The outline of the paper is as follows. In section 2, the functionality
of threads are described, and the question of why threads are dominantly
used versus processes is answered. Section 3 discusses micro-kernel and
the services it provides to the distributes system. Section 4 discusses
resource allocation algorithm in Distributed Operating Syé.tems (DOS).
The consistency of data copy is presented in section 5. Section 6 analyses
the difference between Ne_twork Operating System (NOS) and (DOS).
The last section summarizes and concludes the paper. -

2. Why U‘sing Threads Versus Processes.

Threads, or threads of control, are min-processes. Kai Hwang [4],
defines a thread as a sequence of instructions being executed. A process
may simply be defined as an address space and a single thread of control.
Multiple threads of control can share one address space and still run in
parallel. A server with multiple threads of control, one thread could be
running while the second one is slipping Such execution result in higher
throughput and better performance. Higher throughput and better
performance can’t be achieved by creating two independent server
processes because they must share a common buffer cache which require
them to be in the same address space. This is the main reason as to why
threads are used versus processes. A process is always owned by a single
user who can create multiple threads so that they can cooperate. -

Operation: Threads cooperates with each other to perform certain
task, sharing the same global variables. Processes can not easily achieve
cooperation. In addition threads can share the same open files, child
process, and even a timer. Thread operations such as creation,
termination and .synchronization, are less expensive than processes
because they are implemented by thread library in the same user space
without entering the kernel. Processes on the other hand ‘incurred

375



»

9l

Processes Threads Memory and Resourcesin ....... MohamniedA M. Ibrahim

overheads durmg operation due to copylng, context switching, and
crossing protection boundary [4].

_ Management' Creatmg a thread is much simpler than creating a
process as there, is no need to create a new address space. Only the

~following information needs to ‘be ‘maintained for a spec1ﬁc thread.

Although a process with multiple threads still have a s1ngle address space
shared by all threads, each thread loglcally, has its own registers, its own
counter and its own stack

3. ‘Microkel'nel |

Most distributed systems are equlpped with an ‘operating system
which provide networkmg facilities. One of such systems is a
micro-kernel. The user process system calls to remote machines are made
by trapping the kernel, which does the routing works, and then invoke the
called machine. After having the work done in a remote machine the

‘micro-kernel return the desired result to the user process. The
‘micro-kernel is so important in distributed systems because the services it

provides are difficult or expensive to ‘provide anywhere. With

~ micro-kernel it is possible to have distributed systems 'with multiple file

servers, one supporting MS-DOS and another supporting UNIX file
service. New services can eas1ly be 1mplemented ‘installed, " and
debugged with micro-kernel.

~ Primarily the micro-kernel has four functions [7]

1. Manage process and threads
2. Provide low-level memory management
' 3. Support inter-process communication mechanism.
4, Handle low level input/output.
Brief discussion on each of these.

A typical example of use of a micro-kernel, is managmg threads in
Amoeba file server. The micro-kernel breaks the server into mult1ple
threads, every incoming request is. ass1gned a separate thread to work on.
By splitting the server into multlple threads, each thread can be purely
sequential, if it has to block wa1t1ng for 1/0.

Micro-kernel enables threads to allocate and deallocate blocks of

376 ‘



memory, called segments, which can be used for text, data, stacks, or any
other purpose desired by the process

Point- to-point and group communication in Amoeba are supported
by the micro-kernel. With point-to-point communication, a client sends a
message to a remote server by having its stub trapping the kernel, which
then pass the message to the remote kernel. The replay also traces the
opposite path, being supported by the server and client kernels. For the
client to access a group, the only way is to do RPC with one of the
members. RPC is supported by the micro-kernel using principal primitive
system calls, get_request, put_request and trans. The most advantage of
micro-kernel is to enable communicating parties achieve reliable
communication through a sequence of events [7].

As per function number 4, for each I/O device attached to a machine,
there is a device in the kernel. The driver manages all I/O for the device.

4. The Resource Allocation Algorithm in Distributed Operating
System (DOS).

Simultaneous requests to shared resources in distributed systems,
may result into conflicts. For the system efficiency resolution of these
concurrent requests is necessary. Patterns of access to conflict can be
categorized on the basis of two attributes; (1) the number of resources
requested by a process (or thread), and (2) whether a request in
single-step or incremental [2]. In incremental request, a process holds
onto previously granted resource, while making further request. In a
single step case, a process request its resources all at once.

Synchronized algorithms are need to decide which process should
run on which machine. The decision to be made depends on may
factors such as the knowledge about a process behavior, whether

~ processors are centralized or decentralized etc. The best allocation
always aims at maximizing CPU utilization and minimizing response
time.

Transfer polices are also considered, decision is to be made
whether a process is to run on the local machine or to be transferred
elsewhere. For workstation model the question may be when to run a

377



»

o)

Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim
process locally and when to look for an idle workstation. For the
process pool model a decision is usually made for every new process
created, whether to run to completion in one particular place,
(omnigatory) or to move it from one place to another as it runs
(migratory). All processors know their own load, and
can tell others about their state; whether overloaded, or underloaded.
An example depicted from [7], can be seen on figure 1-(a). Here an
overloaded machine sends out request for help to other machines. In
contrast fig 1-(b), a machine that is idle or underloaded announces to
other machine that is prepared to take more load.

Centralized as well as decentralized resource allocation

algorithms have been proposed. The popular ones includes [7]:
® Graph theoretic deterministic algorithm.
® A Centralized algorithm.

Help T am

Overloaded I"ve nothing

to do l
I’ am want
overloaded — |~ Load

;ake a o )
rocess o | Pleae take
oo some work

{a) {b)

Figure 1 (a) Overloaded machine (b) Underloaded machine seeking
Seeking help for some work

Hierarchical algorithm.

A sender-initiated distributed algorithm.

A receiver-initiated heuristic algorithm and
® Bidding algorithm.

Two of these are briefly discussed.

The graph theory algorithm assumes that the number of CPUs and’

memory requirement are known in advance. In case the number of
CPUs k is smaller than the number of processes, several processes are
assigned to each CPU. The assignment is done such that the network
traffic is minimized as shown in [7] figure 4-17 pp.204.

Centralized algorithm ensures that each workstation gets a fair share
378



Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim
of computing power [6],[7]. Allocation here is based its decision on a
usage table, that keeps watch the processor status. The usage table
coordinator allocate the process to a particular process upon a parent
machine request .

Hierarchical algorithm processors are organized as a group of
workers in hierarchy, with deans, department head, etc. These bosses
does the work of assigning work to processors.

If a process has multiple processes running on it, scheduling become
an issue. When a group of related and heavily interacting processors are
all tunning on different processors, scheduling should support
inter-process communication. Several scheduling algorithm which takes
intercommunication into account exist. Co-scheduling suggested by
Ousterhout (1982) [6],[7], is one of them. It ensures that all members of
the group run at the same time with each CPU using round robin
scheduling algorithm.

5, The Consistency of Data Copy

When Lu and Hudack, (1986), proposed a scheme known as
Distributed Shared Memory (DSM), that is both easy to build and to
program, its implementation exhibit poor performance and latecy, as
pages were sent back and forth the network [7].

One possible optimization was to replicate the shared variables on
multiple machines. Allowing multiple copies seem to improve
performance problem, but introduces another problem of how to keep all

the copies consistent. How to keep several copies of data on different site,

largely depends on the system architecture; i.e. the connection between
the memory and the CPU.

For multi-processors based on bus architecture, the problem might
be two or more CPUs trying to access the memory at the same time. This
problem is solved by having a CPU request a permission to use the bus.
Only after granted permission it can use the bus and acquire memory
‘access. Centralized and decentralized methods ways of granting
permission are available.

To reduce the bus load, snooping cache are used [1],[7]. When a
CPU first read a word from memory, that word is stored in the cache of

379



»

the CPU making a request. If that word is needed again later, the CPU jus
take it from its own cache, thus minimizing memory reference and
reducing bus traffic. Each CPU does its caching independently. The
problem arises when a CPU wants to write a word that is held in other
CPUs cache. How to make sure that different cache do not contain
different values of the same memory location becomes an issue.

One technique used to solve this problem is write through protocol
[7]. It means that; “If the word is currently in the cache, update the cache
entry and then update the memory. Let other caches holding the word
invalidate their entries to make the memory up-to-date”.

An alternative to invalidating the cache entries is to update all others.
However, it is not the best approach, as it demands supplying cache entry,
which makes it slower and causing more network circles.

With large systems such as Dash Switched multiprocessor in which a
system is built as a hierarchy of clusters and super-ctustors, [7] Fig 6-7
pg. 304, the CPU doing the write ensures that it is the owner of the own
copy of the cache block in the system.

Write can only proceed only if its block in the cache in DIRTY. If it has a
CLEAN block, all other copies in the home cluster are invalidated, i.e. ‘
declared INVALID.

NUMA multiprocessor is another design with single virtual address
space visible to all CPUs. It ensures that, when any CPU writes a value to
a location A, a subsequent read of A will return the value just written.

In an attempt to influence both performance and the programmability
of the system, various memory consistency models (or memory model)
have been invented. The most intuitive model, defined by Lamport
(1979) , is sequential consistency model. It says that all processes see all
memory reference in the same order. Causal consistence, PRAM
consistency and processor consistency models also exist, but these
weaken the concept that processes see all memory reference in the same
order. For higher performance, several alternative models have been
proposed. However, many of these are hardware-centric in nature and
difficult to program as they place strong restrictions on software.

380



Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim

6. The Difference between DOS and NOS

Network operating system is a software for machines with multiple
CPUs, that allow users at independent workstations to communicate via a
shared file system while leaving each user as a master of his own work
station. It is loosely-coupled software on a loosely-coupled hardware [7].
A typical example of NOS is a network of workstation in company or a
university connected by a LAN. Each user has a personal wok-station
with its own operating system. It may also have a hard disk.

All commands are normally run locally right on the workstation. It is
also possible for a user to log into another workstation remotely using a
command such us.

rlogin machine
The user has to log out first if he want to switch into a different machine.
Files are copied from one machine to another by using copy command.
rpc machine1:file1 machine2:file2
Communication and information sharing are provided by global file
system, supported by file servers. The file server accept request from user
programs running on the clients to read and write files.

On the other hand Distributed Operating system (DOS), combine the
entire collection of hardware and software into a single integrated system,
acting like a virtual uniprocessor [7]. It is tightly coupled software on a
loosely coupled hardware. Communication is achieved through message
passing. The goal of DOS is to create a single-system image i.e. to create
an illusion in the users minds that the entire network is a single
time-sharing system rather than a collection of distinct machine. Figure 2
gives a summary of differences between NOS and DOS

Item Network Distributed Operating
Operating system | System

Look like Virtual NO YES

Uniprocessor

All machines run the NO YES

same operating system

Communication is Shared files Message passing

achieved by

Files  have  well Usually no YES

defined semantics

381




ﬁ"v

Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim

Figure 2. Difference between NOS and DOS.
7. Summary And Conclusion.

This paper has discussed some ideas of building a distributed system.
It has indicated that even though all distributed systems have many CPUs,
different ways in connecting them exist. Bus based multiprocessor and
switched multiprocessors are among commonly used architectures.

On software point of view, thread are preferred versus processes as

‘they are easy to build, can cooperate to perform certain task, and thus

provide higher throughput and better performance. On the other hand
process work independently, and are less efficient.

The micro-kernel plays an important role in a distributed system.
Among other things, it manages processes and threads, and supports
communication. A typical usage of micro-kernel is in Amoeba and Mach
operating systems. ‘

Resource allocation in distributed systems is a critical issue in
improving performance. Concurrent requests of resources by processes
may result into conflicts. Resource allocation algorithms have been
devised, by researches, to solve the problem. Graph theory, A centralized
algorithm and many others allocate resources aiming at maximizing CPU
utilization and throughput. '

Memory consistency models ensures that, a memory reference leave
data consistence throughout the memory blocks. A standard against all
models, and more practical is sequential consistence.

References.

[1] Agarwal, A., and Cherian, M., Adaptive Backoff Synchronization
Techniques”, “Proceeding. 16" Ann. International Symposium on
Computer Architecture ACM, pp.396-406, 1989.

382



Processes, Threads, Memory and Resources in ....... Mohammed A. M. Ibrahim

[2] Choi Manhoi, and Singh Ambuj, K. “Dynamic Resource Allocation
using Local Views. IEEE 14™ International Conference on
Distributed Computing Systems”, 1994,

[3]Johson, K.L., Kaashoek, M. F., and Wallach, D. A., CRL: “High
performance All-Software Distributed Shared Memory”. In 15%
symposium on operating systems Principals, 1995.

[4]Kai Hwang, and Zhiwe Xu, “Scalable Parallel computing
Technology, Archicture, Programming”, McGraw-Hill Inc., 1998.

[5]Mutka, M.W. and Livny, M., “Scheduling Remote Processor
Capacity in a Workstation-Processor Bank Network,” In IEEE 7%
International Conference On Distributed Computing Systems, pp.
2-9, 1987.

[6] Ousterhout,J.K., “Scheduling Techniques for concurrent systems”,
In IEEE 3™ International Conference On Distributed Computing

systems, pp. 22-30, 1982.

[7] Tanenbaum Andrew S., “Distributed Operating system”,
Prentice-Hall inc. 1995

383



‘.

.

fq



