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ABSTRACT

Generalization of Bochner integral on the segment with
conservation of many Propertics of Bochner integral is
considered, in particular  differentiability almost
everywhere of integral on Superior limit from integrablc
function and completeness of integrable function space are
established.

INTRODUCTION

We will study a Genefalization of Bochner iﬁtegral on the interval
with conservation of basic Properties of Bochner integral, as (i)
differentiability of integral almost everyWhere (a. e.) with respect to its
Superior limit and (i1 ) completeness of integrable function space. |

We note that Bochner integral is the same Lebesgue integral for
vector- valued ‘functions. We will give the concept of integral of
function based on Lebesgue measurable set from real axis, when the

- values of function in locally convex space (L.C.S.). |
The new integral satisfies two important Properties of Bochner

integral: completeness of space of equivalence classes of integrable
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functions and differentiability of integral a.e. on superior limit. That
Properties allow us to develop the theory of differential equations used
in optimal control problems when the right part of differential equation

is random and the initial datas is also random [1], [2], [3], [4].
There are some functions not Bochner integrable on any segment,

but they are integrable under the new concept of integral.

L. The following problems, tend to a new concept of integral.

Let the Cauchy problem be given:

x = f(t,x) (1.1)
X (to) = X
(1.2) Where t , t,e [oo, B] @R and f satisfies some

conditions.

We assume that X, = X, (o) a random quality, ( i e itisa
measuable function from probability space (Q , X , P ) ). Then
(1.1) = (1.2) takes the following form:

(IDx(t,0) ="1f(t, x(t,n)), (1.3)
(1.2)x(te, ®) = X, (®), (1.4)
where the solution of this problem is random process x (t, ®). In
the following example given below there is not Bochner integrable
function:

Let Q = 10,1 [beaLebesgue measurable and f(t, x) =sin (t

X), where

f(t, ) {x(o)— {sin(tx (o))}
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is avmapping of Lp(0,1)=Lp to Lp 1< p<oforfixedt,t=0
which is non differentiable ( in Frechet ) at any point [ 5 ]. But for
1 <p<o wehave,that f(t,.) from (1.5)is differentiable on Lp
on bounded subsets [6] as mapping Lp to (Lp, o) where ( p'+p”
=1) o=c(Lp,Lp')andoc
a weak topology on Lp, thenfor 1 < p <oo the mapping f(t,)
of Lp to Lp is differentiable on compact subsets [ 7 ]. In this case :
(1.6) [f%(t,x)h](w)=[tcos(tx (o))lh(w)
for 1 < p<owo and
(1.7Y £ (t, %) | = ess sup{!t cos tx (@) lwe]o,1[}
We note that if X (.)eLp and ess sup{ |x (0) | o €] 0, 1[ }==,
then '

(1.8t ' (t,Xx)

is a mapping of R in L (Lp,Lp) which isa continuous linear
mapping space from Lp to Lp with natural norm ( see ( 1.7)) not
Bochner integrable on any interval, because it does not possess the
Louzin property [ 8 ].

We remark that the optimal control problems in nfinite-dimensional

spaces use the derivative concept of Frechet and Bochner integral [9]

(101, [11] , [12].

In order to insert the random variables in these problems, we

sometimes can’t use the Frechet derivative and known Bochner
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integral. And we need to study this problems in topological vector
(linear ) spaces.

}

2. Integral and its properties
2.1,
We denote by L (X, Y) the linear space of sequentially continuous
linear mappings from topological linear space (T.L.S) X to T.L. S.
Y and X' -linear space of continuous linear functionals on X,

P(X) — system of all continuous seminorms in X .

b (X) - system of all bounded subsetsin X, and 1= [a,B]cR.

M(I) - set of all Lebesgue measurable subsetsof 1 ., E € M (1)
X —normed space, B={ x ¢ X| [x | <1}
0 - Separable locally convex topology on X which satisfies the

following conditions:

Be - sequentially complete . (2.1)
B- closedin X, (2.2)
b(X) < b (Xp) (2.3)

We note, that from (2.1) - (2.3), we obtain completeness of X
and that the condition (2.2) is equivalent to lower semicontinuous of
normin X as functionon X, From (2.3) we will have the
inclusion,

(2.4) (Xe) cL(Xy,R) X

The following are the examples of the spaces mentioned above:
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1) X — sequentially weak complete Banach space and -0

=c (X ,X') weak topology on X

2) X=L(Y,Z),where Z,Y Banach spaces -0 strong

operator topology on X
2.2. Let the function ¢ :E —Xs be uniformly

continuous and ¢ (E) € b (X). Then exists
n

(2-5)Ef o(t)de=lim = 3 o(L)m(t .t [NE)
Where a=t, < 1,<...<t,=f and & € Jtii,ti[ NE,
A=t~ ti |
and the limit in (2.5) exists in X, This fact follows from the
uniform continuity of the function @, the condition ¢ (E) € b(X) and
the separability of Xo.
Propositiion 2.4,

The following assertions are true:
(2.6) Vx’eL(Xg,R):x]'EJ(p(t)dtzfx’(p(t)dt
@7 VX eL(Xo,R) ¥ o (t)dtl <x lg]l(p(t)ﬂdt
(2.8) yw(ﬂdtHsﬁﬂw(ﬂHdt
(2.9) VpeP(Xe):pgcp(t)dt)%p(@(t))dt
(2.10)1:{[ C1 Q1 (t)+cz<p2(t)]dt=vcg(pl(t)dt+c2Ef(pz(t)dt
for uniformly continuous functions @;: E— Xo, ¢, which

satisfies the conditions ¢ (E) € B(X), ¢; (E) e B(X),c; e R, i=1,2.
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Proof :
The property (a) (2.6) follows from (2.5) and 2.3.
(b) 2.7) follows from (2.6) and inequality || x" @ (t) || <[ x" || ]| @
® |l
(¢) (2.8) follows from (2.7) and (2.2).
(d) (2.9) and (2.10) follows from (2.5) by using the limit in
inequality and equality. |

Remark 2.5. ,

From (2.6) we obtain the additivity of integral as a function of sets
because that is correct for scalar functions.

2.6. we know that a function of sets ¢ : E — X, is called
measurable on E [6] if: Ve>0 thereisa compact K |, KcE
where m (E\K) < e and the function ¢lx : K— X, is
continuous (Louzin property ) and thus || ¢ |||k : K— R is lower
semicontinuous and finally is measurable.

By Louzin theorem there is a compact K, c K where m (KA
K,) <eand the function || ¢ |/lx;, :Ki~>R is continuous. Then
we note that m (E\ki) <2e. Thus, the function | |'E—>R
is measurable.

2.7, Assume that

XP(E,X@)={(p:E—>Xe‘ ¢ — measurable ,

F[‘jf(p(t)]]pdt<oo} for 1< P<ow,
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/N\m(E,Xe):{(pEKI(E,X)ltSEuE o (t)||<w} and
A (B, X)={qehE,Xo)lesssup|o(t)[f<o}

We define in those spaces the following seminorms :
@ lie il = () 1 o()I"d)"™ and 1< p= e
@12) o il = supflo (1) |

te
@213) [1o Il = esssup o (1))
teE

Where |l [l - norm.

It is obvious that Ap E, Xo) 37\p2 (E, Xp)for 1Spi<py S 0.
We remark that the continuous function ¢ : E — Xo,  has its
image bounded In X, and the function is from KP (E Xp) for 1 < p <.

For ¢ € Ay (E, Xo) weassume’
(2.14) [ o (t)dt =lim [ o(t)dt,
E n—% Kn

where K, - compactin E, ¢ | ko Ko—> X is continuous ( and
thus ¢ is uniformly continuous ) (see2.2) ¢ (Ky) € b(X) and m
(E\K,) — 0.
Proposition 2.8.

The limit in ( 2.14 ) existsin X and is independent of the
sequence K.
Remark 2.9.

From ( 2.14 ) and 2.4 follows that (2.6 ) —(2.10 ) hold for ¢, ¢;
S 7\1 (E , Xe).

18



AL-HAMZA MAHMOUD

Proposition 2.10,

Let E,eM(I) , neN |, EnnE,=¢ . fornzm and E =
U1 E,. the function ¢ : E — X, satisfies

0l e AuE, | Xp) and nogl Enf lo(t)l[dt<o. Then ¢ e
/N\l (E, Xg) and
(2.15) Ef(p (t)ydt = ¥ Ef(p(t)dt

n=1"E,
Where the series in ( 2.15 )is convergent in X.

2.11. By A, (E.Xe), 1< p<ow wewill denote the space of
the equivalence classes from A, (E , X,) ( two functions being
equivalent if they are different only on set with zero measure ). We
define the integral on A, (E , Xo) by the known way :

on each equivalence class the integral equals to integral of
representative of that class and the integral is independent of that
representative ( This follows from 2.9 ) . We define in Ay (E | Xy) the

@.16) Il Ml,= (Ef(/@(t)npdt)w and 1< p<ow
217) o e = esssup [ § ()],
where ¢ is representative of class ¢ .

Theorem 2.12.
The space A, (E, Xo) is complete under the norm (2.16) for P = 1.

SEESSESTRE Lm senrome e el L
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Similarly, we can prove that the space A, (B, Xe) is complete,
where 1 < p <oo. The completeness of space A« (E, X) follows
from (2.12) , where O is considered as normed topology .
Lemma 2.13.

Let @, on € Ay (B, Xo) and ¢, —> ¢ in N (E , Xo). Then

there is subsequence @u , where Ouc (1) —> @ (t) ae in X
Theorem 2.14.

Suppose ¢n € Ay (E,Xg),ne N,y e Kl (E,R) and™

| ou(t) | Sy (1) a.e.and Q> @ E— Xg inX a.e.
Then

(2.18) o € Xl (E, Xo) and Ef lon(t)—0(t)|[dt—0
Theorem  2.15.

Let ©,0ne A (E,Xs),neN,0.(t) 2> o(t)a. e and

for each pe P (Xo) Iy, € Ar (E,R) where p (¢n(t))<w,(t)

a.e. .Then .
(2.19) Vp ep(xe):h[ p(@u(t)—@(t))dt—0
Corollary 2.16.

Let Pn, O 67\1 (E,Xe),neN, gn () >0 ()Xo a e,
veA (E,R) , [[oa® < w(t) a e Thenthe formula (2.19)
holds.
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Theorem 2.17.
Let ¢ e 7\] (E, Xq). Then Vg >0 thereris a continuous
function y : I Xp where y (I)eb(X), | | o (t)-w(t)l dt<e and
mite E | o (t) # y(t) } <e. :
If oe Aoo (E,Xs) , then y may be selected to satisfy the “
condition : ‘
esssup {||w(t)| | tel } <esssup {lo (t)| | teE}
Corollary 2.18.
For any function ¢ € 7\ (E, Xo) there is a sequence of
continuous functions ¢, : I — X, where o) € bX), @u (t) > F
@) in X ae and
Floa ()= (t)[[dt>0andm { teEl g, (t) % ¢ ()} 0

If  ¢eAs(E,Xp) , then o, may be selected where
esssup || @n (t) || < esssup || @ (t) |
tel teE

Remark 2.19.

The space Kl (E, Xp) contains the closed subspace A, (E, X)
of  Bochner integrable functions ¢ :E—X. Thespace A, (E,
Xo) contains All continuous functions ¢ :E-— Xy where ¢ (E) ¢ b
(X) (see 2.7 ). moreover the space contains the functions from ( 1.8),
which do not be Bochner integrable, and thus A, (E, Xo) # A, (E.X).
‘We also remark that integrable functions as in 2.7, will be

integrable under the Pettis concept [ 6 ].
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2.20. For' peA(I1,Xp) and t, t1e I, and t<t; W€
assume t_[t Q(s)ds = —tjt(p (s)ds
Theorem 2.21.

Let ¢ € 7\1 (I, Xo).Then the function ¢(t) Txft(p (s) dsis
differentiable a. e. as a map from [ to Xoand ¢'(H)=¢(t) a. €.
2.22. We note that the function ¢ 11— X is called absolutely

continuous if Ve >0 . 38> 0 such that for every finite disjoint open

subinteivals 1oy, Bi[c 1 , the sum of whose lengths is less than 8

holds the inequality :
2l o (Bi) - d(a)l<e

Proposition 2.23.
t

Let o€ Ay (1, Xo) . Then the function ¢ (t) =O(I o(s)ds 1S
absolutely continuous as mapping from I to X.
Proposition 2.24.

Let ¢ :1— Xo be a differentiable function a. e. , where ¢ as
map from 1 to X isabsolutely continuous and @' (t) =0 a
e, Then ¢ (t) isa constant function,

2.25. Assume
W (1, Xo)={6:1>Xe/ T e A, (I, Xp)Fae R :

t
(Hh=a +OLJ ¢ (s)ds}. For 1<p<o. From 221 follows

that for every ¢ € W', (I, Xo) the function ¢ € A, (1, Xo) will be

22



AL-HAMZA MAHMOUD

defined in a unique way and that is sufficient for ¢’ (t) to give an

element from KP (I, Xo) in a unique way. .

Proposition 2.26.

Let ¢ €W, (I, Xo). Then ¢ (1) - (1)) :tlf t¢' (s)ds this follows
from 225, 221 and 2.11.
Proposition 2.27.
The two following conditions are equivalent :
Iy ¢ e W, (1,X),
2)  ¢:1->X isabsolutely continuous and ¢ T X

is differentiable a. e., and 3¢ e Xp (I, Xo) such

that ¢’ (H)=0 (t) a. e.,
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