

67

46.pp.87-113

Image Steganography using image channels

 slicing technique and multiple random keys

تبادل - ملخص عند اليومية، وخاصةً حياتنا من يتجزأ لا الحاضر جزءًا الوقت في التكنولوجيا استخدام أصبح

المعلومات عبر الإنترنت. يتطلب نقل البيانات الحساسة أساليب أكثر أمانًا لضمان حماية مناسبة للبيانات. الطريقة

الأكثر شيوعًا هي إخفاء المعلومات، والتي تلعب دورًا رئيسيًا في حماية المعلومات من خلال إخفائها في غلاف

نقترح طريقة جديدة يثير الشكوك. في هذا العمل، الفيديو أو أي وسيط رقمي لا آمن مثل الصور أو الصوت أو

أهمية الأقل البت باستخدام الرقمية الصور في المعلومات مفاتيح .(LSB) لإخفاء المقترحة الطريقة تستخدم

والتعرف العشوائي على مواقع إخفاء البيانات بطريقة SHA-256إنشاؤها عبر خوارزمية التجزئة عشوائية يتم

لصورة الغلاف كطبقة متصلة واحدة. لكل صف من الصورة، يتم RGBغير خطية. تعامل الطريقة قنوات ألوان

ربط قيم البكسل بالترتيب الصارم التالي: أولاً قيم قناة اللون الأحمر للصف، ثم قيم قناة اللون الأخضر، وأخيرًا قيم

قناة اللون الأزرق. تتكرر هذه العملية بالتتابع لجميع الصفوف عبر الصورة. تقُسّم الطبقة المتصلة بعد ذلك إلى كتل

(. يتم تحديد موقع واتجاه تضمين 8× 8ثم 16× 16والتي يتم تقسيمها بعد ذلك إلى كتل فرعية أصغر) ،32×32

بنا متوسط البيانات مثل معايير باستخدام المقترحة الطريقة أداء تقييم تم التجزئة. مفاتيح على الخطأ ءً مربع

(MSE)ونسبة ذروة الإشارة إلى الضوضاء ، (PSNR)ومؤشر التشابه الهيكلي ، (SSIM). أظهرت نتائج الأداء

على جودتها البصرية والهيكلية حتى مع وجود كميات كبيرة من البيانات الصورة الناتجةكفاءة عالية، وحافظت

 .المضمنة

Abdulmalek Alqobaty

Faculty of Applied Science

Taiz University

Qobaty@Taiz.edu.ye

Tahani Ali Esmaeel*

 Faculty of Applied Science

Taiz University

Tahanialamri2015@gmail.com

mailto:Qobaty@Taiz.edu.ye
mailto:Tahanialamri2015@gmail.com

88

Abstract

Nowadays, the use of technology has become an integral part of our daily lives,

especially when exchanging information over the Internet. The transmission of

sensitive data requires more secure methods to ensure proper data protection. The

common most widely used method is information hiding. which plays a major role in

protecting information by hiding it in a secure cover such as images, audio, video, or

any digital medium that does not raise suspicion. In this work, we propose a new

method to hide information in digital images using the least significant bit (LSB). The

proposed method uses random keys generated via the SHA-256 hashing algorithm and

random identifying for data hiding locations in a nonlinear manner. The method treats

the RGB color channels of the cover image as a single continuous layer. For each

image row, the pixel values are concatenated in the following strict order: first the Red

channel values of the row, then the Green channel values, and finally the Blue channel

values. This process is repeated sequentially for all rows across the image. The

continuous layer is then divided into 32×32 blocks, which are then divided into smaller

subblocks (16×16 and then 8×8). The location and direction for data embedding are

determined based on hash keys. The proposed method performance was evaluated

using benchmarks such as mean square error (MSE), peak signal-to-noise ratio

(PSNR), and structural similarity index (SSIM). The performance results demonstrated

high efficiency, and the stego images maintained their visual and structural quality even

with large amounts of embedded data.

Keywords: Steganography, LSB, Randomization, RGB, Blocks.

89

1. Introduction

Humans have recognized the importance of protecting information from hostile individuals, or

organizations. Over time, various ideas, methods, and techniques have been developed to

prevent information leaks or unauthorized disclosure. Before the advent of technology, simple

methods were used that aligned with the limited knowledge and abilities of the time like (Wax

Tablets, Shove Heads, Invisible Ink and Morse code) (Kumari, Pritam, 2013). The explosive

growth of computers and information technology led to the emergence of communication

system, some of which contain sensitive information. However, intruders attempt to access

sensitive information especially during the transmission. Thus, many techniques have been

proposed to ensure information security during transmission process. These techniques are still

progressing toward becoming more secure and robust in terms of performance measures

(Kadhim et al., 2019). Generally, information security systems are separated into two major

categories: cryptography and steganography (Kadhim et al., 2019). Both fields try to protect

transmitted message (K. P. and V. K. Sharma, 2014), but in deferent ways. While cryptography

protects the content of message using encryption keys, the steganography hides the message

into cover media (Haverkamp, Indy; Sarmah, 2024).

Cryptography is the science of converting secret messages into a different form to be

exchanged over an insecure channel. Hence, no one can access the correct information unless

she know the used key (K. P. and V. K. Sharma, 2014). Based on the selected key, there are

two basic types of cryptography techniques: symmetric key and asymmetric key encryption

techniques. In symmetric key encryption, a single key is used for both encryption and

decryption. This technique, however, requires a secure way to share the encryption key

between the sender and receiver. However, asymmetric key encryption involves a public key,

which is used for encrypting and a private key which, is used for decrypting (K. P. and V. K.

Sharma, 2014). Steganography uses effective techniques for securing transmitted messages by

hiding the confidential information within a common media such as images, audio, video, or

text. Steganography seeks to achieve three main goals: effectively hiding data, maintaining its

integrity, and remaining undetectable. Sometimes, encryption may be combined with

steganography to achieve an additional level of security (Ahmed et al., 2014).

Images are more widely used as a cover media to hide information. The spatial domain and

transformation domain are the two primary approaches used in image steganography. In spatial

domain techniques, secret data is directly embedded in the intensity values of individual pixels

(Mohsin & Alameen, 2021), Least Significant Bit (LSB) steganography (Neeta et al., 2006),

Most Significant Bit (MSB) steganography (A. Sharma et al., 2018), Pixel Value Differencing

(PVD) (Wu & Tsai, 2003), Histogram shifting (Ni et al., 2006), and

90

 Difference expansion(Tian, 2003). On the other hand, transformation domain techniques

involve applying transformations on the image to hide data based on its frequency

components. Methods like Discrete Cosine Transform (DCT)(Chu et al., 2004)(H. Patel &

Dave, 2012), Discrete Wavelet Transform (DWT) (Tolba et al., 2004), and Discrete Fourier

Transform (DFT) (Bhattacharyya & Kim, 2011) are commonly used. One of the main features

of LSB is that it offers high data embedding capacity without increasing file size. However,

embedding a large amount of data can significantly degrade the quality of the stego image

(Swain & Saroj(MITS), 2012). This trade-off between capacity and imperceptibility is a

common challenge in steganography (Hameed et al., 2022).

In this work, we propose a new secured method for hiding data within digital images using

the least significant bit (LSB). It uses random keys generated via the SHA-256 hashing

algorithm. Moreover, this method is proposed to enhance security and identify hiding locations

in a nonlinear manner. The proposed method begins by concatenating the RGB color channels

of a cover image into a single extended layer. This layer is then divided into 32×32-value

blocks, which are further divided into smaller subblocks (16×16 and then 8×8). The

embedding process uses the subblocks to hide the message. The proposed method is developed

using C# programming language and is tested using some common images of 512×512 as a

cover object. The experimental results show high imperceptibility and security has been

achieved through proposed technique.

The rest of this paper will be organized as follows. The related work is presented in Section

2. In Section 3, we describe the proposed approach. Section 4 introduces the Experimental

results and discussion of the proposed method. Finally, the conclusion is presented in Section

5.

2. Related Work

The Least Significant Bit (LSB) technique has been enhanced by employing random

distribution patterns to determine data hiding locations, with the aim of improving security,

increasing hiding capacity, and maintaining image quality. Several studies have been published

in this area, such as the researcher (Swain and Saroj (MITS) 2012) proposed a method based

on dividing the image into 8 blocks and dividing the encrypted message using the RSA

algorithm into 8 blocks. An index channel within each block was selected based on the highest

sum of its values, and the other two channels were used to hide the data in 4 least significant

bits (LSBs). The method demonstrated high security and excellent image quality with good

data hiding ability. Another method to distribute data within an image pseudo-randomly using

LSB and Knight’s Tour algorithm was proposed by (Nie et al. 2019). The

91

method was divided image into small blocks of 4×4 pixels, where the starting point was

determined using a secret key to move through the blocks based on the knight’s movement,

which ensures the data was distributed pseudo-randomly and makes the hidden data more

difficult to detect. In the other hand, (Ehsan Ali et al. 2021) proposed an improvement to the

data hiding technique in 24-bit color images using a pseudo-random number generator

(PRNG) and LSB technique. The PRNG was used twice: one to select a random pixel within

the image to ensure non-repetition, and the second to determine the bit locations within the

color channels of each pixel. The results showed greater data hiding ability and increased

security.(Abdulraman et al., 2019) suggest a method for image steganography using spatially

partitioning the image into 8×8 pixel blocks. The technique relies on representing each block

in binary and comparing the bit values with the secret message data, with 6 secret pixels (48

bits) being inserted into each block. The smallest possible number of bits in the last row (LSB)

are modified to indicate the location of the hidden data. Experiments have shown that the

technique achieves a PSNR above 50 dB even with a 100% steganography ratio. However

(Jyoti et al., 2014) proposed using a random pattern to embed the secret data inside the image

in a way that makes it difficult for an attacker to decrypt. The image was divided into 4-pixel

blocks and the RGB values of the first block are used to locate the key, then the blocks are

randomly selected to hide the secret message. Also, (A. Patel & Vekariya, 2022) introduced to

divide the image into 4×4 pixel blocks to hide the data inside them. The blocks are divided into

input blocks (e-blocks) and index blocks (i-blocks), where the data of the index blocks was

hidden in the input blocks. The method works well with different image formats and can hide

large texts inside color images while maintaining image quality.

(S.Tamil Selvan, 2022), presented a method that provides three levels of security by using a

pseudo-random number generator (PRNG) to generate random pixels, and then hiding the data

using an inverted LSB algorithm. The method showed higher visual quality compared to

conventional LSB technique. A data hiding technique based on calculating the image energy

and cost matrix was proposed by (Khandelwal et al., 2016). The image was divided into 4×4

pixel blocks, and dynamic programming was used to determine the most efficient random path

based on energy and cost. The data was hidden in the least significant bits (LSB) of randomly

selected pixels, which enhances security and increases the level of difficulty in detection.

Moreover, (Kareem et al., 2020) proposed a method for hiding text inside an image by

encrypting the text using the 3DES algorithm, then dividing the image into 8×8 pixel blocks.

The XOR operation was used between the cipher text bits and the image bits to hide the data,

and then the modified image was encrypted again using 3DES. The results showed high

security and excellent image quality, with effective resistance to attacks.

92

A new method based on circular shapes inside color images using the circular Hoff

transform to identify circular regions was proposed by (Al-Kateeb et al., 2020). In this method,

the text was encrypted using the Caesar algorithm and the ciphertext was distributed over the

three-color channels (R, G, B) based on a distribution map that determines the

location of the pixels within the circle. The method showed high efficiency in security and

image quality with complete data retrieval without errors. While, (Kordov & Zhelezov, 2021),

presented an algorithm for hiding texts in color images using a combination of encryption and

LSB technique. A random number generator based on Duffing and Circle maps was used to

generate random pixel locations and embed the ciphertext within the least significant bits

(LSBs) of the color channels. The method showed high efficiency through PSNR tests and

histogram analysis, with resistance to statistical attacks and high image quality.

(Saber et al., 2025)proposed a new method for hiding information within color images based

on variable hiding centers and dynamic block sizes. The image was divided into four regions,

and the block sizes (4×4 or 8×8) are dynamically selected based on a random value derived

from the message. The embedding capacity depends on the number of blocks, with 4×4 blocks

achieving a larger capacity of up to 2048 bytes compared to 512 bytes for 8×8 blocks. The

methodology was evaluated using metrics such as PSNR, MSE, SNR, SSIM, and others, and

the results demonstrated high quality of the steganographic image and effective protection

against unauthorized retrieval.

(Rahman et al., 2025), They proposed an efficient LSB-based image steganography technique

including Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key,

transposition, and flipping. The process starts by flipping and shifting the cover image, then

splitting it into color channels (R, G and B), with a focus on the blue channel is divided into

four blocks and reordered using a magic matrix. The difference values between the secret

message and the red channel are computed, and the resulting data is encrypted using the

MLEA algorithm with a secret key. The ciphertext is embedded into the blue channel

subblocks via LSB, and the process is repeated until the embedding is complete. The channels

are then re-encoded, and the operations are reversed to restore the original image structure.

This methodology features a strong integration of encryption, transformation, and bit

substitution techniques, achieving an effective balance between stealth capacity, resistance to

analysis, and image quality preservation.

93

(Njoum et al., 2024), proposed a new methodology for hiding data in color images using the

LSB algorithm, supported by AVL tree and queue data structures. The method is based on

constructing an AVL tree from the green color channel, which is used only as an indicator of

the locations of hidden bits in other channels. The hiding process is performed by randomly

selecting non-consecutive pixels according to the tree order, without the need for a secret key.

The color channel in which data is embedded is randomly selected (R or B), enhancing the

secrecy of the embedding and reducing the possibility of pattern detection. The method

demonstrated high hiding capacity with minimal distortion of the cover image, facilitating

subsequent retrieval.

(Yakoob, 2025), proposed a system that introduces a hybrid approach that combines image

segmentation, LSB steganography, and zigzag steganography. The process begins by

calculating the length of the secret message and converting it to a binary vector, then adjusting

the dimensions of the cover image to a multiple of 8. The image is then divided into 8×8 pixel

blocks, and each block is converted to a 64-element vector using zigzag scanning. Only one-

color channel (R, G, or B) is used, from which the least significant bit (LSB) is extracted. Each

LSB is replaced by a bit of the message, allowing 8 bytes to be hidden in each block. The

process is repeated until the entire message is encapsulated, and the length of the message is

hidden in a previously known pixel. Finally, the blocks are returned to their locations, and the

carrier image is saved and transmitted to the receiver.

Finally, (Raiyan & Kabir, 2025) proposed a robust LSB-based image steganography

framework that integrates randomized encryption and error correction to enhance data security

and resilience. This method involves compressing and converting the secret payload into text,

followed by pseudo-random shuffling using an SHA-256-derived seed. The shuffled text is

then encrypted using the Fernet symmetric cipher. The resulting binary message is embedded

into the least significant bits of RGB pixels, achieving a capacity of

94

 3 bits per pixel. SCREEDSOLO demonstrated strong resistance to noise and passive

steganalysis while maintaining high image quality.

Despite progress in digital steganography, existing methods still face challenges in balancing

security, resistance to statistical attacks, and image quality. This thesis proposes a new

approach that integrates RGB channel slicing, dynamic key generation, and pixel shuffling to

distribute data uniformly, create non-linear embedding paths, and enhance randomness. This

method improves resilience against statistical attacks while preserving high image quality.

Table 1. Comparison of image steganography methods in related works

Reference Core Technique Key Advantages Disadvantages/Limitations

(Swain & Saroj(MITS),

2012)

LSB with RSA and

block partitioning

High security and

excellent image quality.

Still relies on traditional LSB.

(Nie et al., 2019) LSB with Knight’s

Tour algorithm

Pseudo-random data

distribution, making it

difficult to detect.

Vulnerable if the fixed path or

secret key is discovered.

(Ehsan Ali et al., 2021) LSB with PRNG

(Pseudo-Random

Number Generator)

High hiding capacity and

resistance to statistical

analysis.

Relies on simple XOR and

PRNG; may be vulnerable if

randomization pattern is

discovered.

(Abdulraman et al.,

2019)

LSB with spatial

partitioning

Excellent image quality

(PSNR > 50 dB).

May be detectable if changes in

the last row are analyzed.

(Jyoti et al., 2014) LSB with a random

pattern and key-

based block

selection

It makes it difficult for

attackers to decrypt due to

the random pattern.

May be vulnerable if the first

block (a potential single point of

failure) is compromised.

(A. Patel & Vekariya,

2022)

LSB with block

partitioning (i-

blocks, e-blocks)

Effective with different

image formats.

Indexing may consume

embedding capacity.

(S.Tamil Selvan, 2022) LSB with PRNG

and inverted LSB

Three levels of security

and higher visual quality.

The method's complexity may

introduce higher computational

costs.

(Khandelwal et al.,

2016)

LSB with

energy/cost matrix

and dynamic

programming

Enhanced security and

more difficult detection.

Higher computational cost due

to the dynamic programming

algorithm.

95

(Kareem et al., 2020) LSB with 3DES and

XOR operation

High security and

excellent image quality

with effective resistance to

attacks.

No specific disadvantages

mentioned, but complexity can

be a challenge.

(Al-Kateeb et al., 2020)

LSB with circular

Hoff transform and

Caesar cipher

High efficiency in

security, image quality,

and error-free data

retrieval.

Limited to circular shapes within

the image.

(Kordov & Zhelezov,

2021)

LSB with an

advanced random

number generator

Strong resistance to

statistical attacks and high

quality.

Complexity in key generation.

(Saber et al., 2025) LSB with dynamic

block sizes

Flexible capacity and

effective security.

Dependent on a random value

derived from the message.

(Rahman et al., 2025) LSB with a Magic

Matrix and MLEA

Strong integration of

encryption and

transformations.

Adds complexity to the process.

(Njoum et al., 2024) LSB with AVL tree

and queue data

structures

High hiding capacity with

minimal distortion.

Lack of a secret key could be

security vulnerability in some

contexts.

(Yakoob, 2025) LSB with zigzag

scanning and

segmentation

Innovative hybrid

methodology.

May be slow due to multiple

transformations.

(Raiyan & Kabir, 2025) LSB with

randomized

encryption and error

correction

High resistance to noise

and passive steganalysis.

The overall framework is

complex.

3. Proposed Approach

In this work, we propose a new, robust, and secure enough method to embed message into a

cover images. The proposed method considers the cover image as three channels: red, green

and blue to embed message into. The main idea of the proposed approach is to treat the three-

color channels as a single contiguous layer. This unified layer is then systematically

partitioned into N consecutive blocks of 32×32. Each block of 32×32 is then divided into 4

non-overlapping sub-blocks of 16×16, which in turn are divided into 4 sub-blocks of 8×8.

96

To embed the data in cover image block, first the embedding block and data embedding

direction is selected randomly. To achieve that, each block needs to generate its own key. The

key is generated using the SHA-256 algorithm of the 7 most significant bits of the bytes in

each block pixel channels. The generated key bytes are combined with the previous block key

bytes using XOR. The first block key is an exception. It is generated using a SHA-256

algorithm of the 7 most significant bits selected from the entire cover image.

Using chained keys enhances security and embedding unpredictability, as each key depends on

the previous one. However, this dependency also means that if synchronization is lost during

extraction or a block becomes corrupted, errors may propagate to subsequent blocks. To

minimize such risks, the method integrates a hash-based integrity verification step, in which a

SHA-256 hash of the secret message is generated before embedding and compared with the

hash of the extracted message during retrieval. Matching hash values confirm that the message

was recovered correctly without alteration, while a mismatch indicates potential corruption or

synchronization loss.

The block and block keys and selecting the data embedding direction are selected for each

block. Hence, the required keys and embedding directions are generated according to the

following method:

- The cover image is divided into 32×32 blocks, which are orders sequentially.

 BlockKey = SHA256 (7 most significant bits of the inter image) (1)

- The first 32×32 block key is selected randomly from the number of the 32×32 blocks:

 BlockKeyfirst = BlockKey

- The first 32×32 block is selected randomly using the following equation:

 Blockfirst = (∑(ASCII (BlockKeyfirst))𝑚𝑜𝑑 (block counts + 1) (2)

- Remove used block and reorder the others, each time the block count will be decreased by 1.

- The Nth 32×32 block is also now selected randomly from current count number of the blocks:

- The Nth 32×32 block key is selected randomly from the number of the 32×32 blocks:

 BlockKeyN th = SHA256 (7 most significant bits of the current 32 × 32 block) (3)

BlockKeyN th = SHA256(Combine (BlockKey𝑁𝑡ℎ−1, BlockKey𝑁𝑡ℎ
))

97

 Block𝑁+1𝑡ℎ
= (∑(ASCII (BlockKeyN th))𝑚𝑜𝑑 (block counts + 1)

The embedding direction is selected from one of the sixteen possible directions illustrated in

Figure 1. As explained previously, the first embedding block of 32×32 pixels is randomly

selected. The embedding direction of the four 16×16 sub-blocks within each 32×32 block is

determined by the following equation:

 Direction = (∑(ASCII (BlockKey))𝑚𝑜𝑑 16 (4)

The starting embedding position in 8 ×8 sub-block is determined by the following equation:

 StartPosition(b1,b2,b3,b4) = (∑(ASCII (BlockKey))𝑚𝑜𝑑 64 (5)

Where 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒 represents four 8*8 sub-blocks.

Figure 1: The expected embedding direction

The proposed approach is designed into two methods: embedding method to embed the secret

message into the cover image and the other is extracting method to extract the message from

the cover image.

Embedding Method

The main function of the embedding method is to embed the secret message into predefined

blocks within the cover image. The method treats the RGB color channels of the cover image

as a single continuous layer. The color values of pixels are concatenated in an order of red,

green, and blue.

To embed the message into the cover image, we use the composed layer, which is divided into

32×32 blocks, which are selected randomly using the equations (2) and (3). The main key is,

also, generated using equation (1). The key of each subsequent block is derived using equation

(3). The first block key is an exception; it uses the main key that is calculated by equation (1).

Each selected 32×32 block is divided into four non-overlapping 16×16 sub-blocks. The

embedding process is performed on a 16×16 subblock, which interleaves

0 1 4 5 8 9 12 13

2 3 6 7

10 11 14 15

98

embedding on its four 8×8 sub-blocks using a selected direction as shown in Figure 2. The

figure shows an example for embedding data into two pixels. In pixel 1 the embedding is start

from first 8×8 subblock using the direction 2, while direction 3 is used with pixel 4.

 1 4 ◉ ◉

 ◉ ◉ ◉ ◉

Figure 2: Example of Data Embedding in Four 16×16 Subblocks

Figure 3 shows the message embedding method to hide a message into the 32×32 blocks. In

the step 2 the block is divided into four 16 ×16 subblocks. In the step 3 each subblock is

further divided into four 8 ×8 subblocks. Moreover, the starting position of data embedding is

determined in one of 8 ×8 subblocks using equation (5). In the step 4, the data embedding is

performed starting from the stating position and in the opposite position in other 8 ×8

subblocks based in the selected direction that is determined by equation (4) as shown in

Figure 2. The process is repeated until the data is embedded on all pixels of the 16 ×16

subblocks. Then move to the next 16 ×16 subblocks. The embedding process is stopped when

the message is fully embedded into the cover image.

8 8

8

8

99

Start

Cover Image,
Message

• Unify Color Channels as a single layer(R,G and B).
• Generate the Main Key equation (1).
• Generate a list of blocks 32*32

Select 32*32 block
using block key.

Slice block into four
16*16 sub-blocks.

Is it the last 16*16
subblock?

• Remove used 32*32 block from list.
• Reorder list.
• Generate new block key

• Slice block selected into four 8x8 sub-blocks.
• Get the embedding position in all 8*8 sub-blocks.

• Get the embedding’s direction.
• Embed 4 bits into the location in LSBs of the pixels

Is message fully
embedded?

Is it last pixel in 8*8
subblock?

Stego image

End

Yes

No

No

No

Yes

Yes

1

2

3

4

Figure 3: The embedding processes of proposed method

Extracting Method:

The extraction method is the reverse method of the embedding method and follows the same

logic and structure to accurately retrieve the hidden data. It relies on regenerating the same

block keys and navigating through the image using the same directional and positional rules.

The extracting process is shown in Figure 4.

100

Start

StegoImage

• Unify Color Channels as a single layer(R,G and B).
• Generate the Main Key equation (1).
• Generate a list of blocks 32*32

Select 32*32 block
using block key.

Slice block into four
16*16 sub-blocks.

Is it the last 16*16
subblock?

• Remove used 32*32 block from list.
• Reorder list.
• Generate new block key

• Slice block selected into four 8x8 sub-blocks.
• Get the extracting position in all 8*8 sub-blocks.

• Get the extractings direction.
• extract 4 bits into the location in LSBs of the pixels

Is message fully extract?
Is it last pixel in 8*8

subblock?

Yes

No

No

No

Yes

Yes

1

2

3

4

End

• extract hash from message
• calculated hash for

message

Has calculated hash message
like extracted hash?

Secret Message
extract successfully

Secret Message does
not extract successfully

Yes No

Figure 4: The extracting processes of proposed method

4. Experimental Results and Discussion

Digital steganography systems are evaluated based on four main characteristics:

imperceptibility, security, robustness, and hiding capacity (Kunhoth et al., 2023).

101

 Imperceptibility ensures that the hidden information is not revealed to the human eye or

statistical analysis. Security aims to protect confidential data from discovery or removal.

Steganalysis capacity refers to the amount of data that

can be included without affecting the quality of the medium. Finally, robustness expresses the

system's ability to withstand digital modifications and manipulation while maintaining the

integrity of the hidden data (Kadhim et al., 2019).

Experiment Environment

The proposed approach is implemented, and all experiments were performed using Visual

Studio 2017 and C# programming language, on a laptop with a 2. 60 GHz Core i7 processor, 8

GB RAM, and a 512 GB SSD with Windows 11 operating system. The approach was

evaluated using the following performance metrics:

Mean Squared Error: MSE is a statistical measure used to determine the average squared

difference between pixel values in two images. This measure is used to determine the extent of

distortion or change that occurred during the masking process. The lower the MSE value, the

less distortion in the image, which means that the cover image is more similar to the original

image, which we want to achieve in the embedding process(Umme Sara1, Morium Akter2,

2019). The formula for calculating MSE is:

MSE=
1

𝑀𝑁
 ∑ ∑ (𝐶(𝑖, 𝑗) − 𝑆(𝑖, 𝑗))2𝑁

𝑗=1
𝑀
𝑖=1

Where:

𝐶(𝑖, 𝑗): The pixel value at position (𝑖, 𝑗)in the cover image.

𝑆(𝑖, 𝑗): The pixel value at the corresponding position (𝑖, 𝑗) in the stego image.

M, N: The dimensions of the image (height and width, respectively).

Peak signal to noise ratio: PSNR the most prominent and widely used metrics to evaluate

the quality of the resulting image. Higher values of PSNR show better quality of the output

image and less influence of embedding on the cover image(Umme Sara1, Morium Akter2,

2019). For 8-bit depth images, the PSNR is calculated using the following equation:

𝑃𝑆𝑁𝑅 = 10 log10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
)

Where MAX Represents the highest possible value of pixel intensity in the images, MSE is

the Mean Squared Error while comparing the stego and cover image

102

Structural similarity index measure: SSIM is a comparison metric used to assess the

degree of similarity between two images based on structural properties, lighting, and

contrast. It is used to evaluate the quality of an image from a visual perspective and gives a

numerical score between 0 and 1 to show the degree of similarity. The closer the value is to

1, the more similar the images are(Umme Sara1, Morium Akter2, 2019). It is calculated as

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2+𝑐2)

𝑐1 = (𝑘1𝐿)2

𝑐2 = (𝑘2𝐿)2

where μx and μy are the mean intensity values of images x and y. σx
2 is the variance of x, σy

2 is

the variance of y and 2𝜎𝑥𝑦 is the covariance of x and y. c1 and c2 are the two stabilizing

parameters, L is the dynamic range of pixel values (2 # bits per pixel -1) and the contents k1 =

0. 01 and k2 = 0.03.

Quantitative and Visual Analysis

The performance of the proposed steganographic method was quantitatively evaluated using

three standard test images: Baboon, Peppers, and Lena, with varying embedded message sizes

ranging from 1 KB to 96 KB. Table 2 presents the results in terms of Mean Squared Error

(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). The

results indicate that the proposed method maintains high image fidelity, even at maximum

payload capacity. Notably, the SSIM values remain close to 1.0000 across all embedding sizes,

suggesting that the perceptual quality of the images is virtually unaffected.

Figures 5, 6, and 7 further illustrate the impact of increasing payload size on MSE, PSNR,

and SSIM, respectively. While MSE increases gradually with higher payloads, PSNR shows

only a slight decrease, indicating that the embedded images retain a high level of visual

quality. SSIM trends remain consistently high specially with low and medium hidden data,

103

reinforcing the robustness of the proposed method in preserving structural similarity as

shown in Figure.

Table (2): The result of the different data size experiments of the proposed method

Image size

512 512 ×

Image name: Baboon.png

Image name: Peppers.png

Image name: Lena.png

Message

Size KB

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

1 0.0052 70.9712 1.0000 0.0052 71.0107 1.0000 0.0052 70.9479 1.0000

2 0.0105 67.8993 1.0000 0.0103 67.9945 0.9999 0.0104 67.9493 0.9999

3 0.0157 66.1743 1.0000 0.0155 66.2313 0.9999 0.0156 66.2089 0.9999

4 0.0209 64.9289 1.0000 0.0206 64.9874 0.9999 0.0207 64.9650 0.9998

5 0.0261 63.9610 0.9999 0.0257 64.0260 0.9998 0.0260 63.9849 0.9998

10 0.0521 60.9665 0.9999 0.0516 61.0068 0.9996 0.0519 60.9761 0.9995

15 0.0780 59.2081 0.9998 0.0773 59.2484 0.9994 0.0782 59.1993 0.9993

20 0.1041 57.9557 0.9998 0.1033 57.9909 0.9993 0.1043 57.9493 0.9991

25 0.1300 56.9930 0.9997 0.1293 57.0159 0.9991 0.1304 56.9768 0.9989

30 0.1561 56.1964 0.9996 0.1552 56.2207 0.9989 0.1568 56.1777 0.9987

35 0.1820 55.5297 0.9996 0.1812 55.5496 0.9987 0.1830 55.5065 0.9985

40 0.2080 54.9503 0.9995 0.2070 54.9705 0.9985 0.2092 54.9261 0.9983

45 0.2342 54.4358 0.9995 0.2329 54.4597 0.9983 0.2351 54.4179 0.9980

50 0.2602 53.9771 0.9994 0.2586 54.0038 0.9981 0.2612 53.9618 0.9978

96 0.4997 51.1436 0.9989 0.4983 51.1557 0.9962 0.4994 51.1460 0.9959

104

Figure 5: MSE Performance of Baboon, Peppers, and Lena Images with Increasing Embedded

Message Size.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 10 15 20 25 30 35 40 45 50 96

M
SE

 v
al

u
e

Embedded size in KBytes

MSE Variation with Message Size for Different Images

MSE Baboon

MSE Peppers

MSE Lena

0

10

20

30

40

50

60

70

80

1 2 3 4 5 10 15 20 25 30 35 40 45 50 96

P
SN

R
 v

al
u

e

Embedded size in KBytes

PSNR Variation with Message Size for Different Images

PSNR Baboon

PSNR Peppers

PSNR Lena

105

Figure 6: PSNR Performance of Baboon, Peppers, and Lena Images with Increasing Embedded

Message Size.

Figure 7: SSIM Performance of Baboon, Peppers, and Lena Images with Increasing Embedded

Message Size.

From a visual perspective, Table 3 displays a side-by-side comparison of the cover and stego

images at different payload sizes (10 KB, 45 KB, and 96 KB). Visual inspection reveals

negligible differences between the original and stego images. In addition, the accompanying

color histograms demonstrate a strong overlap between the original and modified images,

indicating that the proposed embedding process introduces minimal perceptual or statistical

artifacts. This further validates the method’s effectiveness in concealing information without

compromising image integrity.

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

1 2 3 4 5 10 15 20 25 30 35 40 45 50 96

SS
IM

 v
al

u
e

Embedded size in KBytes

SSIM Variation with Message Size for Different Images

SSIM Baboon

SSIM Peppers

SSIM Lena

106

Table 3: Visual and Color Histogram Analysis of Steganographic Embedding in Standard

Test Images (Baboon and Pepper of size 512*512) with Different Data Payloads

Cover image

babbon

Stego image 96

KB

Cover image

Stego image 45

KB

Cover image

Stego image 10

KB

Cover image

Stego image 96

KB *

107

Cover image

Stego image 45

KB

Cover image

Stego image 10

KB

5. Comparison with Other Methods (with 3-bit per pixel embedding)

To ensure a fair and consistent evaluation of our method, we compared it with the methods of

Patel et al. (A. Patel & Vekariya, 2022) and Raiyan and Kabir (Raiyan & Kabir, 2025). These

methods share a fixed embedding rate of 3 bits per pixel (bpp), allowing us to objectively

compare image quality metrics such as mean squared error (MSE), maximum signal-to-noise

ratio (PSNR), and structural similarity index (SSIM) under the same conditions. Other studies

using different embedding rates were excluded to avoid misleading conclusions.

The results in Table 4 clearly demonstrate the superiority of our method. Our method

consistently achieved lower MSE values and higher PSNR than both other methods,

demonstrating a better ability to preserve image quality.

Comparison with Patel et al.'s method (A. Patel & Vekariya, 2022): When embedding a data

payload of 10,414 bytes, our method achieved a PSNR score of 60.8910 dB and an SSIM of

0.9999, significantly outperforming Patel et al.'s method. which achieved 51.39399 dB and

0.99795, respectively.

Comparison with the Raiyan and Kabir method(Raiyan & Kabir, 2025): When including a

larger payload of 11,972,988 bytes in the Lena image, our method achieved a lower MSE

(0.0607 vs. 1.003) and a higher PSNR (60.2980 dB vs. 52.888 dB). Our SSIM score (0.9995)

also demonstrated better preservation of structural similarity.

108

These results confirm that our new method offers less visual distortion and better image fidelity

preservation, even when including large amounts of data. Figure 8 also demonstrates the clear

superiority of our method in terms of PSNR values compared to other methods.

Table 4. Comparison of results with other proposed methods

Method MSE PSNR SSIM Payload

Capacity

Image / Size

Proposed Method 0.0530 60.8910 0.9999 10,414 bytes Baboon.png (512×512)

(A. Patel &

Vekariya, 2022)

– 51.39399 0.99795 10,414 bytes W6.jpg (512×512)

(Raiyan & Kabir,

2025)

1.003 52.888 0.9996 11,972.988 bytes Lena (512×512)

Proposed Method 0.0607 60.2980 0.9995 11,972,988 bytes Lena (512×512)

Figure 8: Comparison of PSNR Values for the Proposed Steganography Method Against Existing

Methods.

Patel et al Proposed Method Raiyan and Kabir Proposed Method

PSNR 51.39399 60.891 52.888 60.298

Capacity Payload in KB 10.17 10.17 11.70 11.70

0

10

20

30

40

50

60

70

Comparison of PSNR of the proposed method with other methods.

109

6. CONCLUSIONS

A method for hiding data in images using Least Significant Bit and random keys is proposed

in this work. The method relies on channel slicing and random number generation techniques

to ensure a high level of security and high embedding capacity. Performance was evaluated

using benchmarks such as PSNR and SSIM. The results demonstrate high quality of the

modified images (stego image), while maintaining the capacity of the hidden data. It was also

confirmed that the proposed

method achieves its goals of ensuring data anonymity and efficient data loading. Results

reveal that the proposed method is considered an effective and secure solution to the modern

challenges of hiding data in images.

Future Work:

In future work, the proposed method can be extended to other multimedia carriers, such as

audio and video. This will allow a deeper evaluation of its adaptability and robustness under

different transformations, including compression and transmission errors. Such an extension

would demonstrate the method’s potential applicability in broader real-world scenarios.

Data Availability

The Lena image used during the current study is available in image datasets in GitHub at the

following link: https://github.com/mikolalysenko/lena/blob/master/lena.png. Additionally, the

baboon and pepper image are available in image data sets in the USC-SIPI Image Database

https://sipi.usc.edu/database.

The embedded texts were generated using the Lorem Ipsum generator available at:

https://www.blindtextgenerator.com/lorem-ipsum.

https://github.com/mikolalysenko/lena/blob/master/lena.png
https://sipi.usc.edu/database
https://www.blindtextgenerator.com/lorem-ipsum

110

References

1.Abdulraman, L. S., Salah, S. R. H., Maghdid, H. S., & Sabir, A. T. (2019). A robust way of

steganography by using blocks of an image in spatial domain. Innovaciencia, 7(1), 1–7.

https://doi.org/10.15649/2346075X.516

2.Ahmed, E. A. E., Soliman, H. H., & Mostafa, H. E. (2014). Information Hiding in video

files using frequency domain. International Journal of Science and Research, 3(6), 2431–

2437.

3.Al-Kateeb, Z. N., Al-Shamdeen, M. J., & Al-Mukhtar, F. S. (2020). Encryption and

Steganography a secret data using circle shapes in colored images. Journal of Physics:

Conference Series, 1591(1), 1–11. https://doi.org/10.1088/1742-6596/1591/1/012019

4.Bhattacharyya, D., & Kim, T. H. (2011). Image data hiding technique using discrete

Fourier transformation. Communications in Computer and Information Science, 151

CCIS(PART 2), 315–323. https://doi.org/10.1007/978-3-642-20998-7_39

5.Chu, R., You, X., Kong, X., & Ba, X. (2004). A DCT-based image steganographic method

resisting statistical attacks. ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings, 5(20111029), 1–4.

https://doi.org/10.1109/icassp.2004.1327270

6.Ehsan Ali, U. A. M., Ali, E., Sohrawordi, M., & Sultan, M. N. (2021). A LSB Based Image

Steganography Using Random Pixel and Bit Selection for High Payload. International

Journal of Mathematical Sciences and Computing, 7(3), 24–31.

https://doi.org/10.5815/ijmsc.2021.03.03

7.Hameed, R. S., Mokri, S. S., Sabah Taha, M., & Muneeb Taher, M. (2022). High Capacity

Image Steganography System based on Multi-layer Security and LSB Exchanging Method.

In IJACSA) International Journal of Advanced Computer Science and Applications (Vol.

13, Issue 8, p. 2022). www.ijacsa.thesai.org

8.Haverkamp, Indy; Sarmah, D. K. (2024). Evaluating the merits and constraints of

111

cryptography-steganography fusion: a systematic analysis. International Journal of

Information Security.

9.Jyoti, A., Banerjee, S., & Gupta, G. (2014). High Capacity Image Steganography Using

Block Randomization. IJCSN -International Journal of Computer Science and Network

ISSN, 3(6), 2277–5420.

10.Kadhim, I. J., Premaratne, P., Vial, P. J., & Halloran, B. (2019). Comprehensive survey of

image steganography: Techniques, Evaluations, and trends in future research.

Neurocomputing, 335, 299–326. https://doi.org/10.1016/j.neucom.2018.06.075

11.Kareem, H. R., Madhi, H. H., & Mutlaq, K. A. A. (2020). Hiding encrypted text in image

steganography. Periodicals of Engineering and Natural Sciences, 8(2), 703–707.

https://doi.org/10.21533/pen.v8i2.1302.g554

12.Khandelwal, P., Bisht, N., & Thanikaiselvan, V. (2016). Randomly hiding secret data using

dynamic programming for image steganography. 2015 International Conference on

Computing and Network Communications, CoCoNet 2015, 777–783.

https://doi.org/10.1109/CoCoNet.2015.7411278

13.Kordov, K., & Zhelezov, S. (2021). Steganography in color images with random order of pixel

selection and encrypted text message embedding. PeerJ Computer Science, 7, 1–21.

https://doi.org/10.7717/PEERJ-CS.380

14.Kumari, Pritam, C. K. and J. B. P. (2013). Data security using image steganography and

weighing its techniques (pp. 238–241). International Journal Of Scientific & Technology

Research 2.11.

15.Kunhoth, J., Subramanian, N., Al-Maadeed, S., & Bouridane, A. (2023). Video

steganography: recent advances and challenges. Multimedia Tools and Applications,

82(27), 41943–41985. https://doi.org/10.1007/s11042-023-14844-w

16.Mohsin, N. A., & Alameen, H. A. (2021). A Hybrid Method for Payload Enhancement in

Image Steganography Based on Edge Area Detection. Cybernetics and Information

Technologies, 21(3), 97–107. https://doi.org/10.2478/cait-2021-0032

17.Neeta, D., Snehal, K., & Jacobs, D. (2006). Implementation of LSB steganography and its

112

evaluation for various bits. 2006 1st International Conference on Digital Information

Management, ICDIM, 173–178. https://doi.org/10.1109/ICDIM.2007.369349

18.Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transactions

on Circuits and Systems for Video Technology, 16(3), 354–361.

https://doi.org/10.1109/TCSVT.2006.869964

19.Nie, S. A., Sulong, G., Ali, R., & Abel, A. (2019). The use of least significant bit (LSB)

and knight tour algorithm for image steganography of cover image. International Journal

of Electrical and Computer Engineering, 9(6), 5218–5226.

https://doi.org/10.11591/ijece.v9i6.pp5218-5226

20.Njoum, M., Sulaiman, R., Shukur, Z., & Qamar, F. (2024). High-Secured Image LSB

Steganography Using AVL-Tree with Random RGB Channel Substitution.

https://doi.org/10.32604/cmc.2024.050090

21.Patel, A., & Vekariya, D. (2022). Randomly Hiding Secret Data Using I-Blocks and E-

Blocks for Image Steganography. In P. K. Singh, S. T. Wierzchoń, J. K. Chhabra, & S.

Tanwar (Eds.), Futuristic Trends in Networks and Computing Technologies (pp. 375–390).

Springer Nature Singapore.

22.Patel, H., & Dave, P. (2012). Steganography Technique Based on DCT Coefficients.

International Journal of Engineering Research and Applications (IJERA), 2(1), 713–717.

23.Rahman, S., uddin, J., Hussain, H., Shah, S., Salam, A., Amin, F., de la Torre Díez, I.,

Vargas, D. L. R., & Espinosa, J. C. M. (2025). A novel and efficient digital image

steganography technique using least significant bit substitution. Scientific Reports, 15(1),

1–16. https://doi.org/10.1038/s41598-024-83147-3

24.Raiyan, S. R., & Kabir, M. H. (2025). SCReedSolo: A Secure and Robust LSB Image

Steganography Framework with Randomized Symmetric Encryption and Reed-Solomon

Coding. http://arxiv.org/abs/2503.12368

25.S.Tamil Selvan, R. R. (2022). Image Steganography using Complemented Random Inverted

Least Significant Bit Substitution. 21(12), 1735–1743.

26.Saber, S. M., Tuieb, M. B., Jabbar, K. K., Ahmed, M. H., & Abbas, F. N. (2025). Utilizing

113

Variable Hiding Centers and Dynamic Block Sizes to Improve Image Steganography. AIP

Conference Proceedings, 3264(1). https://doi.org/10.1063/5.0260030

27.Sharma, A., Poriye, M., & Kumar, V. (2018). A Secure Steganography Technique Using

MSB. International Journal of Emerging Research in Management and Technology, 6(6),

208. https://doi.org/10.23956/ijermt.v6i6.270

28.Sharma, K. P. and V. K. (2014). Information Security Based on Steganography &

Cryptography Techniques: A Review. International Journal.

29.Swain, G. S., & Saroj(MITS), L. (2012). A Novel Approach to RGB Channel Based Image

Steganography Technique.pdf. In International Arab Journal of e-Techhnology (Vol. 2,

Issue 4, pp. 181–186).

30.Tian, J. (2003). Reversible Data Embedding Using a Difference Expansion. IEEE

Transactions on Circuits and Systems for Video Technology, 13(8), 890–896.

https://doi.org/10.1109/TCSVT.2003.815962

31.Tolba, M. F., Ghonemy, M. A., Taha, I. A., & Khalifa, A. S. (2004). Using Integer Wavelet

Transforms in Colored Image-Steganography. 4(2), 75–85.

32.Umme Sara1, Morium Akter2, M. S. U. (2019). Image Quality Assessment through FSIM,

SSIM, MSE and PSNR—A Comparative Study.

33.Wu, D., & Tsai, W. (2003). A steganographic method for images by pixel-value

differencing. 24, 1613–1626. https://doi.org/10.1016/S0167-8655(02)00402-6

34.Yakoob, Z. A. (2025). Embedding a Robust Secret Data Using Image Steganography with

Segmentation and Zigzag. Iraqi Journal of Computers, Communications, Control and

Systems Engineering, 25(1), 68–82. https://doi.org/10.33103/uot.ijccce.25.1.6

