

INVERSE DOMINATION IN SOME OPERATIONS ON INTERVAL-VALUED FUZZY GRAPHS

Ahmed N. Shain **1, * ,** Mahiuob M.Q. Shubatah **1, ²** Yahya Qaid Hasan **1, ³ and** Saqr H. Al-Emrany **1, ⁴**

Department of Mathematics, Faculty of Education and Science, Sheba Region University, Marib, Yemen *Corresponding author

To cite this article:

Authors Name. Paper Title. *ICTSA – 2021 Proceedings*, 2021, pp. x-x.

Received: MM DD, 2020; **Accepted**: MM DD, 2020; **Published**: MM DD, 2021

Abstract:

The inverse dominance number $\square \sqsubseteq \square$ was invented and examined in this paper for several operations on interval-valued fuzzy graphs, such as union, join, and composition.

. **Keywords:** Interval-valued fuzzy graph, Inverse domination number, Operation on fuzzy graph, Inverse domination set.

1. Introduction

In the discipline of mathematics, a fuzzy graph is an application tool that allows users to concisely define the relationship between any two concepts. As an extension, Zadeh[16] developed the notion of interval-valued fuzzy sets. Of fuzzy sets [17], where the membership degrees' values are intervals of instead of the numbers, we'll use the numbers. Traditional fuzzy sets do not adequately describe uncertainty, however interval-valued fuzzy sets do. The hazy relationships Rosenfeld [11] also explored the relationship between fuzzy sets, and he derived the fuzzy graphs have a specific structure. Recently. Several characteristics and operations on interval-valued fuzzy graphs have been examined by Akram and Dudek [3]. Several significant works [4, 5, 6, 7, 8, 9, 10, 15] can be found in fuzzy graph theory.

2. Preliminaries

We review in this section, some basic definitions related to interval-valued fuzzy graphs and domination in fuzzy graph.

An interval-valued fuzzy graph of a graph *G*[∗] = (*V,E*) is a pair $G = (A, B)$, where $A = [\mu_{A}, \mu^{+}_{A}]$ is an interval-valued fuzzy set on *V, B* = $[\rho_{B}^{-}, \rho_{B}^{+}]$ is an interval-valued fuzzy relation on *V* , such that

 $\mu^{-}_{A}(x) \leq \mu^{+}_{A}(x); \forall x \in V \text{ and } \rho^{-}_{B}(x,y) \leq$ $min\{\mu_{A}^{-}(x), \mu_{A}^{-}(y)\}\$ and ρ $\bigcup_{B}^{+}(x,y)$ \leq $min\{\mu^+_{A}(x), \mu^+_{A}(y)\}; \forall (x, y) \in E.$ In an interval-valued fuzzy graph *G*, when $\rho^-(u,v)$ = $\rho^+(u,v) = 0$ for some *u* and *v*, then there is no edge between u and v . Otherwise there exists an edge between *u* and *v*. Let $G = (A,B)$ be an interval-valued fuzzy graph. Then the cardinality of interval-valued fuzzy graph *G* is defined as

$$
|G| = \sum_{u \in V} \frac{1 + \mu^+(u) - \mu^-(v)}{2} + \sum_{(u,v) \in E} \frac{1 + \rho^+(u,v) - \rho^-(u,v)}{2}
$$

The vertex cardinality of an interval-valued fuzzy graph *G* is defined by

$$
|V| = \sum_{u \in V} \frac{1 + \mu^+(u) - \mu^-(u)}{2}
$$

.

For all $u \in V$ is called the order of an interval-valued fuzzy graph and is denoted by $p(G)$. The edge cardinality of an interval-valued fuzzy graph *G* is defined by

$$
|E| = \sum_{(u,v)\in E} \frac{1+\rho^+(u,v)-\rho^-(u,v)}{2}
$$

For all $(u, v) \in E$ is called the size of an interval-valued fuzzy graph and is denoted by $q(G)$. An edge $e = (x, y)$ of an interval-valued fuzzy graph is called effective edge if $\rho^+(x,y)$ = $min\{\mu^+(x), \mu^+(y)\}\$ and $\rho^-(x,y) = min\{\mu^-(x), \mu^-(y)\}.$ The degree of a vertex can be generalized in different ways for an interval-valued fuzzy graph $G = (A, B)$. The effective degree of a vertex *v* in an interval-valued fuzzy graph, $G = (A, B)$ is defined to be summation of the weights of the effective edges incident at *v* and it is denoted by $d_E(v)$. The minimum effective edges degree of *G* is $\delta_E(G)$ = *min*{ $d_E(v)$ |*v* $\in V$ }. The maximum effective degree of *G* is $\Delta_E(G) = max\{d_E(v)|v \in V\}$. A vertex *u* of an interval-valued fuzzy graph *G* is said to be an isolated vertex if $\rho^{-}(uv) < min\{\mu^{-}(u), \mu^{-}(v)\}\$ and $\rho^+(uv)$ < $min\{\mu^+(u), \mu^+(v)\}$ for all $v \in V - \{u\}$ such that there is an edge between *u* and *v*, i.e., $N(u)$ = *φ*. A set *S* of vertices of an interval-valued fuzzy graph *G* is said to be independent if $\rho^-(uv)$ < $min\{\mu^{-}(u), \mu^{-}(v)\}\$ and $\rho^{+}(uv) < min\{\mu^{+}(u), \mu^{+}(v)\}\$ for all $u, v \in S$. An interval-valued fuzzy graph, *G* $=(A,B)$ is said to be Complete interval-valued fuzzy graph if $\rho^-(v_i, v_j) = min\{\mu^-(v_i), \mu^-(v_j)\}, \rho^+(u, v)$ $= min\{\mu^+(u), \mu^+(v)\},$ for all $u, v \in V$ and denoted by K_p . The complement of an interval-valued fuzzy graph, $G = (A, B)$ is an interval-valued fuzzy graph, $G = (A, B)$ where

.

 $\rho^{-}(u, v) = min\{\mu^{-}(u), \mu^{-}(v)\} - \rho^{-}(u, v)$ and $\rho^{+}(u, v) =$ $min\{\mu^+(u), \mu^+(v)\}$ – $\rho^+(u, v)$ for all $u, v \in G$. An interval-valued fuzzy graph $G = (A,B)$ of a graph $G^* = (V,E)$ is said to be bipartite if the vertex set *V* can be partitioned into two nonempty sets V_1 and *V*₂ such that $\rho^{-}(xy) = 0$ and $\rho^{+}(xy) = 0$ if $x, y \in V_1$ or $x, y \in V_2$. Further if $\rho^-(xy) = \min\{\mu^-_A(x), \mu^-_A(y)\}\$ and $\rho^+(xy) = min\{\mu^+_{A}(x), \mu^+_{A}(y)\}\$ for all $x \in V_1$ and $y \in V_2$. Then *G* is called a complete bipartite fuzzy graph is denoted by K_{μ} −*A*, μ +*A*, where μ ⁻_{*A*} and μ ⁺_{*A*} are restrictions of μ_A^- and μ_A^+ on V_1 and V_2

respectively. An edge $e = xv$ of an interval-valued

fuzzy graph *G* is called an effective edge if
\n
$$
\rho^{-}(xy) = min\{\mu_A^-(x), \mu_A^-(y)\} \text{ and}
$$
\n
$$
\rho^{+}(xy) = min\{\mu_A^+(x), \mu_A^+(y)\}.
$$

In this case, the vertex *x* is called a neighbor of y and conversely. $N(x) = \{y \in V : y \text{ is a nieghbour of } x\}$ is called the neighborhood of *x*. A subset $(S \subseteq V)$ of $V(G)$ is called dominating set in interval-valued fuzzy graph *G*, if for every $v \in V - S$ there exists $u \in S$ Such that (u, v) is strong edge. A dominating set *S* of *G* is called minimal dominating set of *G* if *S* − {*u*} is not dominating set for every *u* ∈ *S*. A minimal dominating set *S*, with $|S| = \gamma(G)$ is denoted by γ −*set*. Let $G =$ (*A,B*) be an interval-valued fuzzy graph and let *S* be *γ* − *set* of *G*, if $V - S$ has a dominating set S^8 . Then S^8 is called an inverse dominating set of *G* with respect to *S*. An inverse dominating set S^8 of interval valued fuzzy graph G , is called minimal inverse dominating set, if $S^8 - \{u\}$ is not inverse dominating set, for every $u \in S^8$. The minimum fuzzy cardinality taken over all minimal inverse dominating sets of an interval-valued fuzzy graph *G*, is called The inverse domination number of an interval-valued fuzzy graph *G* and denoted by $\gamma^8(G)$ or simply γ^8 . The maximum fuzzy cardinality among all minimal inverse dominating set of an interval-valued fuzzy graph *G* is called the upper inverse domination number of *G* and is denoted by $\Gamma^{8}(G)$.

3. Results & discussion

Theorem 3.1. Let G_1 and G_2 be two vertices disjoint interval-valued fuzzy graphs, then $\gamma^8(G_1 \cup$ G_2) = $\gamma^8(G_1) + \gamma^8(G_2)$ *.*

Proof. Let S_1 and S_2 be tow γ_1 −set and γ_2 of G_1 and *G*₂ respectively. Since

 G_1 and G_2 are vertices disjoint. By Theorem (1) [2] and Theorem(2) [1], we get

$$
\gamma^{8}(G_1 \cup G_2) \leq |V_1 + V_2 - S_1 \cup S_2| = p_1 - \gamma(G_1) + p_2 - \gamma(G_2) = \gamma^{8}(G_1) + \gamma^{8}(G_2) \square
$$

In the flowing Example, we discuss in detail the result in the above Theorem.

Example 3.2. Consider the interval-valued fuzzy graphs G_2 and G_1 given in the Figures 5.1*a* and 5.1*b*, respectively, such that all edges of G_1 and G_2 are strong edges.

The union of G_1 and G_2 is shown in Figure (5.1*c*,) we see that $S_1^8 = \{b, c\}$ is a γ^8 – *set* of $G_1, S_2^8 = \{e\}$ is a γ^8 – *set* of G_2 and γ_1^8 = 1.25*,* γ_2 = 0.65*.* Now, S^8 = $S_1^8 \cup S_2^8$ is a γ^8 -*set* of $G_1 \cup G_2$. Hence $\gamma^8(G_1 \cup G_2)$ = $|S_1 \cup S_2| = |S_1 + S_2| = 1.25 + 0.65 = 1.9 = \gamma_1 + \gamma_2.$

The flowing Theorem given γ^8 of $G_1 + G_2$.

Theorem 3.3. Let G_1 and G_2 be any two interval-valued fuzzy graphs, then

$$
\gamma^8(G_1+G_2) = min{\gamma^8(G_1), \gamma^8(G_2)}.
$$

.

Proof. Let G_1 and G_2 be two interval-valued fuzzy graphs with γ_1^8 and γ_2^8 respectively. Then by $Remark(3.1), [1]$

*γ*⁸(*G*₁ + *G*₂) ≤ *p* − *γ*(*G*₁ + *G*₂)

Since the inverse dominating set is dominating set. Then be Theorem (4) [2] and Definitions (3.1),(3.2), (3.3) and Definition of Join, [1] we get

$$
\gamma^{8}(G_1+G_2)=min{\gamma^{8}(G_1,\gamma^{8}G_2)}.
$$

The flowing example discuss in detail the result in the above Theorem.

Example 3.4. Consider the interval-valued fuzzy graphs G_1 and G_2 given in the Figures 5*.*2*a* and 5*.*2*b* respectively, such that all edges in *G*¹ and G_2 are effective

The join of G_1 and G_2 given in Figure (5.2*b*) we can verify that $|S_1^8|$ =

 $|\{u_1\}| = 0.60$ is a γ^8 -*set* of G_1 , $|S_2^8| = |\{v_1, v_5\}| = 1.2$ is a $γ$ ⁸ −*set* of *G*₂. Hence

$$
\gamma^{8}(G_1+G_2)=min\{S_1^{8},S_2^{8}\}=\{u_1\}=0.60
$$

The flowing Theorem given *γ* for the composition of any tow interval-valued fuzzy graphs G_1 and G_2 .

Theorem 3.5. Let S_1^8 and S_2^8 be γ^8 – *sets* respect to

 \Box S_1 and S_2 of intervalvalued fuzzy graphs G_1 and G_2 , respectively. Then

$$
\gamma(G_1 \circ G_2) = min\{|S_1^8 \times S_2|, |S_2^8 \times S_1|\}.
$$

Proof. Let $(u, v) \in S_1^8 \times S_2$.: Since S_1^8 is γ^8 -*set* respect to S_1 of G_1 , Therefore,

$$
S_1^8
$$
 is γ – *set* of G_1

Similarly, $(u, v) \in S_2^8 \times S_1$. Now: By Theorem

(8),[2] we get: $|S_1^8 \times S_2|$ and $|S_2^8 \times S_1|$ are γ – *sets* of

$$
(G_1 \circ G_2)
$$

Since $\gamma(G_1 \circ G_2) = |S_1 \times S_2|$ Theorem (8) [2]. Then

 $|{S_1}^8 \times S_2|$ and $|{S_2}^8 \times S_1|$ are γ^8 – *sets* of $(G_1 \circ G_2)$

Hence, by Definitions (3.1) , (3.5) ,[1] and Definition of composition Hence,

$$
\gamma(G_1 \circ G_2) = min\{|S_1^8 \times S_2|, |S_2^8 \times S_1|\}.
$$

The flowing example explain the results in above Theorem.

Example 3.6. For the interval-valued fuzzy graphs G_2 and G_1 given in the Figures 5.4*a* and 5.4*b*, respectively.

We can verify that $S_1^8 = \{e\}$ is γ^8 -set respect to S_1

 $= \{d\}$ of *G*₁ and *S*₂⁸ = $\{b,d\}$ is γ ⁸ – set respect to *S*₂ =

 ${a}$ of G_2

We can verify that $S_1^8 \times S_2 = \{ae\}$ and $S_2^8 \times S_1 = \{db, dc\}$ are a γ^8 -sets of $G_1 \circ G_2$. Hence $\gamma G_1 \circ G_2 = min\{ |S_1^8 \times S_2|, |S_2^8 \times S_1| \}$ $= min\{|ae|, |bd,dc|\} = min\{0.65, 1.1\} = 0.65$

4. Conclusion

In this paper, the concepts of inverse domination number were found of some operations on interval-valued fuzzy graphs and were discussed with the suitable examples.

References

- [1] Ahmed N. Shain1, M.Q. Mahiuob Shubatah, "Inverse dominating set of an interval-valued fuzzy graph",Asian Journal of Probability and Statistics, 11(3), (2021), 42-50.
- [2] Ahmed N. Shain1, M.Q. Mahiuob Shubatah. Saqr H. Al-Emrany and Nojood A. Al-Khadari (2021)."domination in some operations on intervalvalued fuzzy graphs", International Journal of Computer Applications, 183(39), 1-6.
- [3] M. Akram, Interval-valued fuzzy line graphs, Neural Computing and Applications, 21(1), (2012), 256-267.
- [4] M. Akram and W. A. Dudek, Interval-valued fuzzy graphs, Compute. Math. Appl. 61(2), (2011), 289-299.
- [5] P. Debnath, "Domination in interval-valued fuzzy graphs", Annals of Fuzzy Mathematics and Informatics, 6(2), (2013), 363-370.
- [6] F. Haray, "Graph theory", Addison Wesley, Third printing, October, (1972).
- [7] A. Kaufman, Introduction a La Theorie des Sous-ensembles Flous, Paris, Masson et cie Editeurs, (1973).
- [8] J. N. Mordeson and C. S. Peng, Operations on fuzzy graphs, Inform. Sci. 79 (1994) 159âĂŞ170.
- [9] M. Naga Maruthi Kumari and R. Chandrasekhar, "Operations on intervalvalued fuzzy graphs", IJARSE; 4(4),(2015), 618-627.
- [10] T. Pramanik, Sovan Samanta and Mahdumangai Pal, "interval-valued fuzzy graphs", International Journal of

Fuzzy logic and Intelligent Systems, 20 (4), (2020), 316-323.

- [11] A. Rosenfeld, Fuzzy graphs, In: L. A. Zadeh, K. S. Fu and M. Shimura, (Eds). "Fuzzy Sets and their Applications", Academic Press, 1975, New York.
- [12] H. Rashmanlou, Sovan Samanta and M. Pal, "Some results on intervalvalued fuzzy graphs", International Journal of Computer Science and Electronics Engineering , 3(3), (2015), 205-211.
- [13] A. Somasundaram, S. Somasundaran, "Domination in fuzzy graphs-I", Pattern Recognition Letters, 19, (1998), 787-791.
- [14] A. Somasundaram, "Domination in fuzzy graphs-II", Journal of Fuzzy Mathematics, 20, (2000), 281-289.
- [15] D.Umamageswari and P.Thangaraj, "Domination operation on bipolar fuzzy graphs", International Journal of Computational Research and Development, 2,(2017), 56-65.
- [16] L. A. Zadeh, "Fuzzy Sets", Information and Control, 8, 1965, 338-353.
- [17] L. A. Zadeh, The concept of a linguistic and application to approximate reasoning I, Inform.Sci. 8 (1975) 149âĂŞ249.